
Infinite-randomness quantum critical points induced by dissipation

Thomas Vojta,1 Chetan Kotabage,1 and José A. Hoyos1,2

1Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2Department of Physics, Duke University, Durham, North Carolina 27708, USA

�Received 19 September 2008; revised manuscript received 13 November 2008; published 5 January 2009�

We develop a strong-disorder renormalization group to study quantum phase transitions with continuous
O�N� symmetry order parameters under the influence of both quenched disorder and dissipation. For Ohmic
dissipation, as realized in Hertz’s theory of the itinerant antiferromagnetic transition or in the superconductor-
metal transition in nanowires, we find the transition to be governed by an exotic infinite-randomness fixed
point in the same universality class as the �dissipationless� random transverse-field Ising model. We determine
the critical behavior and calculate key observables at the transition and in the associated quantum Griffiths
phase. We also briefly discuss the cases of super-Ohmic and sub-Ohmic dissipations.
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I. INTRODUCTION

In recent years, it has become clear that quenched disor-
der, i.e., impurities, defects, or other types of imperfections
can significantly modify the low-temperature behavior of
quantum many-particle systems. At zero-temperature quan-
tum phase transitions, the interplay between large-scale
quantum fluctuations and random fluctuations leads to much
more dramatic disorder effects than at classical thermal
phase transitions, resulting in various exotic phenomena such
as quantum Griffiths effects,1–3 non-power-law dynamical
scaling,4,5 or even smeared phase transitions.6,7 A recent re-
view of some of these phenomena can be found in Ref. 8.

The quantum phase transitions in random transverse-field
Ising magnets are among the most striking examples of such
behavior. Utilizing a real-space renormalization-group �RG�
technique due to Ma et al.,9,10 now known as the strong-
disorder RG �see Ref. 11 for a review�, Fisher4,5 showed that
the one-dimensional random transverse-field Ising chain fea-
tures an unconventional infinite-randomness critical point
with ultraslow activated rather than power-law dynamical
scaling. It is accompanied by strong power-law quantum
Griffiths effects in the vicinity of the transition. While it was
initially suspected that this scenario is special to one space
dimension, Motrunich et al.12 showed that the random
transverse-field Ising models in two and three dimensions
also display infinite-randomness critical points.

A dissipative environment further hampers the dynamics.
In the experimentally relevant case of Ohmic damping, the
large locally ordered droplets that are normally responsible
for quantum Griffiths effects completely cease to tunnel.13–15

Instead, they develop static order independently from the
bulk system which destroys the sharp quantum phase transi-
tion by smearing.6,7 A similar freezing of locally ordered
droplets also occurs close to a quantum-percolation
transition.16,17

The above behavior of Ising order parameters must be
contrasted with that of continuous O�N� symmetry order pa-
rameters. While the bulk ground-state phases of one-
dimensional Heisenberg random quantum spin chains are
governed by infinite-randomness fixed points,9,10,18 higher-
dimensional random quantum Heisenberg systems have more

conventional ground states,19,20 and their quantum phase
transitions are governed by conventional critical points.21–24

As in the Ising case, adding Ohmic dissipation hampers the
dynamics of O�N� symmetric order parameters. Vojta and
Schmalian25 showed that the “energy gap” of large locally
ordered droplets is exponentially small in their volume lead-
ing to power-law quantum Griffiths effects analogous to
those in the dissipationless random transverse-field Ising
model. This analogy suggests the important question of
whether Ohmic dissipation can induce an unconventional
infinite-randomness quantum critical point for a continuous
O�N� symmetry order parameter.

In addition to its significance for the theory of quantum
phase transitions, this question also has important experi-
mental applications. Consider the antiferromagnetic quantum
phase transition of itinerant electrons �as observed, e.g., in
heavy fermion compounds26,27�. Within the standard Hertz-
Millis spin-fluctuation theory,28,29 it is described by an O�3�
Landau-Ginzburg-Wilson �LGW� order-parameter field
theory with Ohmic dissipation. The properties of this transi-
tion have been a long-standing unsolved problem; and given
the fact that most experimental systems are rather dirty,
studying the effects of disorder on the Hertz-Millis theory is
of prime interest.

A second potential application is provided by the pair
breaking superconductor-metal quantum phase transitions in
nanowires.30 It can be described by a one-dimensional O�2�
LGW theory with Ohmic dissipation.31–33 There is an experi-
mental evidence that the pair breaking in this systems is
caused by surface magnetic impurities which necessarily also
introduce quenched disorder.

In this paper, we investigate the quantum phase transition
of a continuous-symmetry O�N� order parameter under the
combined influences of both quenched disorder and Ohmic
dissipation. To this end we develop a strong-disorder RG
suitable for this problem. The paper is organized as follows.
In Sec. II we introduce our model: a dissipative LGW order-
parameter field theory. In Sec. III we implement the strong-
disorder RG in the large-N limit and relate it to that of the
random transverse-field Ising model. We also summarize the
solution and the resulting critical behavior. In Sec. IV, we
calculate key observables close to the transition while Sec. V
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deals with the case of non-Ohmic damping. We also show
that our results do not rely on the large-N limit. We conclude
in Sec. VI. A short account of part of this work has already
been published in Ref. 34.

II. ORDER-PARAMETER FIELD THEORY

We start from a quantum LGW free-energy functional for
an N-component �N�1� vector order parameter �
= ��1 , . . . ,�N� in d space dimensions. For the above-
mentioned itinerant antiferromagnetic quantum phase transi-
tion, generically d=3 and N=3 while for the superconductor-
metal transition in nanowires, d=1 and N=2. The LGW free
energy can be derived from an appropriate microscopic
Hamiltonian of disordered electrons using standard
methods28,29,35 �for a critical discussion of this approach, see
Ref. 36�. In the absence of quenched disorder, the action of
our LGW theory reads

S =� dydx ��x���x,y���y� +
u

2N
� dx �4�x� , �1�

where x��x ,�� comprises imaginary time � and position x,
�dx��dx�0

1/Td�, and u is the standard quartic coefficient.
��x ,y� denotes the bare inverse propagator �two-point ver-
tex� whose Fourier transform reads

��q,�n� = r + �0
2q2 + �0��n�2/z0. �2�

Here, r is the bare distance from criticality �the bare gap�, �0
is a microscopic length scale, and �n is a Matsubara fre-
quency. The nonanalytical frequency dependence of ��q ,�n�
is caused by the coupling of the order parameter to a dissi-
pative bath. We are mostly interested in the case of over-
damped �Ohmic� dynamics corresponding to a value of z0
=2. However, to demonstrate the special role of z0=2, we
also consider different values of z0. The damping coefficient
�0 depends on the coupling of the order parameter to the
dissipative bath and the spectral density of the bath modes.

In the presence of quenched disorder, the functional form
of the order-parameter field theory �1� does not change quali-
tatively, but the distance from criticality r becomes a random
function of spatial position. Analogously, disorder appears in
�0, �0, and u.

Let us briefly comment on possible modifications of the
two-point vertex �2� by mode-coupling effects. For the itin-
erant ferromagnetic quantum phase transition37–39 and the
superconductor-metal transition without magnetic
impurities,40,41 the coupling between the order-parameter
fluctuations and the soft particle-hole excitations of the metal
leads to a long-range interaction in space represented by a
nonanalytical q dependence instead of the simple q2 term. In
contrast, in our examples, the q2 term remains the leading
term because the relevant modes are either gapped �for the
superconductor-metal transition due to magnetic impurities�
or couple too weakly to the order parameter �in the case of
the itinerant antiferromagnetic transition�.42

Our goal is the application of the real-space-based strong-
disorder RG. We therefore need to discretize the continuum
action �1� in space �but not in imaginary time� by defining

discrete coordinates x j and rotor variables � j���. These rotors
are coarse-grained rather than microscopic variables. They
represent the average order parameter in a volume 	V large
compared to the microscopic scale �0 but small compared to
the true correlation length �, i.e., � j���=�	Vdy ��x j +y ,��.

For simplicity, we first consider the large-N limit of our
LGW theory. This will allow us to perform all of the follow-
ing calculations explicitly. We will later show that the RG
fixed point is the same for all N�1. The resulting discrete
large-N action reads

S = T�
i

�
�n

�ri + 
i + �i��n�2/z0���i��n��2

− T�
�i,j	

�
�n

�i�− �n�Jij� j��n� , �3�

where ri, �i�0, and the nearest-neighbor interactions Jij
�0 are random quantities and � j��n�=�0

1/T� j���ei�n�d� is the
Fourier transform of the rotor variable. The Lagrange multi-
pliers 
i enforce the large-N constraints �
�i

�k�����2	=1 for
each order-parameter component �i

�k� at each site i; they have
to be determined self-consistently. The renormalized local
distance from criticality at site i is given by �i=ri+
i. In the
disordered phase, all �i�0.

III. STRONG-DISORDER RENORMALIZATION GROUP

The idea of the strong-disorder �Ma-Dasgupta-Hu� RG
�Refs. 4, 5, 9, and 10� consists in the successive decimation
of local high-energy degrees of freedom. It relies on the dis-
order distributions being broad and becomes exact in the
limit of infinitely broad distributions. For now, we assume
that our distributions are sufficiently broad. We will later
show that their widths diverge at the critical RG fixed point,
justifying the method.

A. Single-cluster solution

Let us start by considering a single rotor variable � �i.e., a
single cluster� with the action

Scl = T�
�n

�r + 
 + ���n�2/z0�����n��2. �4�

The value of the Lagrange multiplier 
 is determined by the
length constraint

1 = ��2	 = T�
�n

1

r + 
 + ���n�2/z0
. �5�

At zero temperature, the Matsubara sum can be turned into
an integral, resulting in

1 =
1

2

�

−�

�

d�
1

� + ���n�2/z0
, �6�

where �=r+
 is the renormalized distance from criticality.
To proceed, we now need to distinguish super-Ohmic,

Ohmic, and sub-Ohmic dissipations. In the super-Ohmic
case, z0�2, the integral can be carried out straightforwardly
giving ��2	=c��z0−2�/2�−z0/2 with c being a constant. Solving
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for � yields the relation between the gap and the damping
constant �i.e., the cluster size�

� � �1/��z0/�2−z0�. �7�

In contrast, we need to introduce a high-frequency cutoff �
to carry out the constraint integral in the Ohmic case z0=2,
giving ��2	=ln�1+�� /�� /
�. The resulting dependence of
the gap on the damping constant is exponential,

� = ��/�e
� − 1� 
 ��e−
�, �8�

signifying that a single Ohmic cluster is marginal, i.e., right
at the lower critical “dimension” of the problem. In the sub-
Ohmic case, z0�2, the single-cluster physics changes dra-
matically. The constraint integral in Eq. �6� converges in the
limit �→0. Thus, once ���c=��z0−2�/z0z0 / 

�z0−2��, Eq.
�6� does not have a solution ��0 anymore, implying that the
rotor has undergone a localization phase transition caused by
the sub-Ohmic dissipation.

B. Recursion relations

In our large-N action �3�, the competing independent local
energies are the gaps �i and the interactions Jij �the damping
coefficient �i and the gap �i are not independent; they are
coupled via the large-N constraint at site i�. In the bare
theory, Jij and �i are independent random variables with
probability distributions P�J� and R���, respectively. Each
step of the strong-disorder RG eliminates one rotor variable
by first identifying the largest local energy �=max��i ,Jij�
and then decimating the associated high-energy degree of
freedom.

1. Decimating a site

Specifically, if the largest local energy is a gap, say �2, the
corresponding rotor �2 is far away from criticality and does
not contribute to the macroscopic order parameter. However,
integrating out its fluctuations generates effective interac-
tions between all pairs of sites that couple to �2. If the dis-
order distributions are broad, �2 is much larger than all local
energies associated with the neighboring sites. Thus, �2 can
be integrated out in perturbation theory with the unperturbed
part of the action being

S0 = T�
�n

��2 + �2��n�2/z0���2��n��2, �9�

while S1=S−S0 is the perturbation. Up to second order in
perturbation theory, we only need to consider the interaction
of �2 with the neighboring sites j; thus,

S1 = − T �
j�2,�n

J2j�2�− �n�� j��n� . �10�

The partition function can now be written as

Z =� D
�2��
j�2

D
� j�e−S = Z0� �
j�2

D
� j��e−S1	0

= Z0� �
j�2

D
� j�e−S̃, �11�

where �D
� j� comprises integration over all frequency com-

ponents of � j, Z0 is the partition function associated with the
action S0, and �·	0 denotes the average with respect to S0. The

renormalized action S̃ can be calculated in cumulant expan-
sion

S̃ = − ln�e−S1	0 = �S1	0 −
1

2

�S1

2	0 − �S1	0
2� � ¯ . �12�

Evaluating the averages, we obtain �S1	0=0 due to symmetry
and

�S1
2	0 = T�

�n

��
j

J2j
2 �� j��n��2

�2 + �2��n�2/z0
+ 2�

i�j

Ji2J2j�i
���n�� j��n�

�2 + �2��n�2/z0 � .

�13�

The first term in the square brackets just gives subleading
renormalizations of the gaps � j of the neighboring sites and
can thus be dropped. The second term provides the renormal-

ized interactions J̃ij between all sites that used to couple to

�2. Their leading low-frequency behavior is J̃ij =Ji2J2j /�2 in-
dependent of the exponent z0. This term has to be added to
the interaction Jij already coupling sites i and j if any. Con-
sequently, the final recursion relation for the RG step reads

J̃ij = Jij +
Ji2J2j

�2
. �14�

At the end of the RG step, �2 is dropped from the action.
Note that the multiplicative structure of the effective interac-
tion in Eq. �14� is a direct consequence of second-order per-
turbation theory. It does not depend on details of the model;
in particular, it is valid for any z0.

2. Decimating a bond

Let us now consider the RG step in the case of the largest
local energy being an interaction, say J23, coupling sites 2
and 3. For broad disorder distributions, J23��2 ,�3. Thus, the
two rotors �2 and �3 are essentially parallel and can be re-
placed by a single rotor �̃2 which represents the entire cluster
comprising �2 and �3. The moment �̃2 of the effective rotor,
i.e., the number of original sites in the cluster is the sum of
the moments �2 and �3 of the original rotors,

�̃2 = �2 + �3. �15�

To find the renormalized gap �̃2 of the effective rotor, we
solve exactly the two-site problem involving �2 and �3
while treating the couplings to all other sites as perturba-
tions. The two-site action is given by

S0 = T�
�n

�
i=2,3

�ri + 
i + �i��n�2/z0���i��n��2

− T�
�n

J23�2�− �n��3��n� . �16�

It is subjected to the large-N length constraints

1 = ��2
2	 = T�

�n

d3

d2d3 − J2/4
,
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1 = ��3
2	 = T�

�n

d2

d2d3 − J2/4
, �17�

with dj =rj +
 j +� j��n�2/z0. They determine the Lagrange mul-
tipliers 
i. �It is important to note that the value of ri+
i in
the two-site cluster is different from the single-site �i.�

To integrate out the high-energy mode, we diagonalize the
quadratic form in Eq. �16� separately for each Matsubara
frequency. The two eigenvalues read

�a,b =
1

2

d2 + d3 � ��d2 − d3�2 + J23

2 �

=
1

2
�d2 + d3 � J23� + O� � j

J23
,
�n

J23
� . �18�

The corresponding eigenmodes are given by �a=��2+��3
and �b=−��2+��3 with

� =
d3 − d2 + ��d2 − d3�2 + J2

�
d3 − d2 + ��d2 − d3�2 + J2�2 + J2
,

� =
J

�
d3 − d2 + ��d2 − d3�2 + J2�2 + J2
. �19�

The higher eigenvalue �b is at least J23 above the lower
eigenvalue �a; we thus integrate out the corresponding mode

leaving us with the effective action S̃=T��n

a��a��n��2 and a

length constraint ��a
2	= ����2+��3�2	�1.

We define the renormalized rotor variable by rescaling
�̃2=�a / ��a

2	1/2 because we wish it to fulfill the same length
constraint ��̃2

2	=1 as all other rotor variables. Inserting this
definition into the �diagonalized� two-site action �16� allows
us to identify the renormalized gap, damping constant, and
interactions with the neighbors;

�̃2 =
1

2
��a

2	�r2 + 
2 + r3 + 
3 − J� ,

�̃2 =
1

2
��a

2	��2 + �3� ,

J̃2j = ��a
2	1/2��J2j + �J3j���n→0. �20�

To proceed further, we need explicit results for the Lagrange
multipliers 
2 and 
3 as well as ��a

2	. This requires the solu-
tion of the two coupled integral equations �17�. In the case of
Ohmic dissipation, the integrals are rational and can be done
exactly. In the limit of strong disorder, we obtain r2+
2+r3
+
3−J=2�2�3 /J and � ��n→0=� ��n→0=�2 /2. Moreover, ��a

2	
is bounded between 1 and 2 and approaches 2 in the
asymptotic limit �→0. This leads to the recursion relations

J̃2j = J2j + J3j , �21�

�̃2 = 2
�2�3

J23
, �22�

implying an additive relation for the renormalized damping
constant,

�̃2 = �2 + �3. �23�

We emphasize that the multiplicative form of Eq. �22� is not
independent of the functional form of the action �3�. In con-
trast to the recursion relation �14� for the interactions, the
recursion relation �22� for the gaps is special to the case of
Ohmic dissipation. It is related to the fact that the gap � of
single cluster depends exponentially on the damping constant
�and thus on the cluster size�, �=��e−
�, as derived in Eq.
�8�. We will come back to this point in Sec. V where we
discuss the case of non-Ohmic dissipation.

Although the prefactor in Eq. �22� is larger than 1, this
does not mean that the renormalized gap can become larger
than the decimated ones in the weak-disorder limit. Using
the methods of Ref. 43 we showed that the exact value �20�
of �̃2 
calculated within the two-site action �16�� is always
less than the decimated gaps ��2 and �3� for all �2 ,�3�J2.
Therefore, the system flows toward the infinite-randomness
fixed point for all bare disorder strengths, ensuring the inter-
nal consistency of the RG. The net result of a single RG step
is the elimination of one rotor and the reduction of the maxi-
mum local energy � as well as renormalizations of the re-
maining energies and reconnections of the lattice.

The RG recursion relations �14�, �15�, �21�, and �22� com-
pletely define the RG procedure. They are identical to the
corresponding relations for the dissipationless random
transverse-field Ising model.4,5,12 We thus conclude that our
system belongs to the same universality class. Note, how-
ever, that there are some subtle differences in the behavior of
some observables due to the continuous symmetry of the
order parameter and the Ohmic damping, as will be dis-
cussed in Sec. IV.

C. RG flow equations and fixed points

In this section, we briefly summarize Fisher’s solution4,5

of the strong-disorder RG defined by the recursions �14�,
�15�, �21�, and �22� to the extent necessary for the purposes
of this paper. In one space dimension, the RG step does not
change the lattice topology because the interactions remain
between nearest-neighbor sites only and � and J remain sta-
tistically independent. Therefore, the theory can be formu-
lated in terms of the probability distributions P�J� and R���.
Fisher derived RG flow equations for these distributions and
solved them analytically. There are three types of nontrivial
fixed points corresponding to the ordered and disordered
quantum Griffiths phases and the quantum critical point that
separates them.

The most remarkable feature of the critical fixed point is
that the probability distributions P and R broaden without
limit under renormalization, even on a logarithmic scale. Us-
ing logarithmic variables �=ln��I /�� 
where �I is of the
order of the initial �bare� value of ��, �=ln�� /J�, and �
=ln�� /�� the probability distributions P��� and R��� at the
critical fixed point read
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P��� =
1

�
e−�/�, R��� =

1

�
e−�/�. �24�

The diverging widths of the probability distributions give the
critical point its name, viz. infinite-randomness critical point.
They also a posteriori justify the method because the pertur-
bative recursion relations �14�–�22� become exact in the limit
of infinitely broad distributions �i.e., approaching the critical
point�.

The complete critical behavior can be found by including
the moments and lengths of the clusters in the RG procedure.
It is characterized by three exponents �=2, �=1 /2, and �
= �1+�5� /2. The correlation length exponent � determines
how the average correlation length � diverges if one ap-
proaches the critical point via

� � �r�−�. �25�

Here r denotes the fully renormalized dimensionless distance
from criticality which is given by r�
ln����− 
ln�J�� in
terms of the bare variables �
·� denotes the disorder
average�.44

The tunneling exponent � controls the dynamical scaling,
i.e., the relation between length scale L and energy scale �.
It is of activated rather than power-law type,

ln��I/�� � L�, �26�

which is a direct consequence of the multiplicative structure
of the recursions �14� and �22�. � also controls the density n�

of clusters surviving at an energy scale � in the RG proce-
dure. Its scaling form is given by

n��r� = 
ln��I/���−d/�Xn
r�� ln��I/��� �27�

with the scaling function behaving as Xn�0�=const and
Xn�y→���yd/�e−cdy where c is a constant. As a result, the
cluster density decreases as n��
ln��I /���−d/� at criticality
while it behaves as n��rd��d/z in the disordered quantum
Griffiths phase �r�0�. The dynamical exponent z varies with
z�r−�� in the Griffiths phase.

Finally, the exponent � describes how the typical moment
�� of a surviving cluster depends on the energy scale �. The
scaling form of �� reads

���r� = 
ln��I/����X�
r�� ln��I/��� . �28�

The scaling function behaves as X��0�=const and X��y
→���y1−�. Thus, at criticality the typical moment increases
as ���
ln��I /���� while it behaves as ��

�r���1−�� ln��I /�� in the disordered quantum Griffiths
phase.

The strong-disorder RG steps discussed in Sec. III B gen-
erate effective interactions between sites that were previ-
ously uncoupled. In dimensions d�1, this changes the lat-
tice connectivity and it introduces statistical correlations
between J and �. Therefore, the theory cannot be formulated
in terms of individual probability distributions of these vari-
ables, and a closed-form analytical solution appears to be
impossible. However, Motrunich et al.12 numerically imple-
mented the recursion relations �14�–�22� in two dimensions,
keeping track of all reconnections of the lattice under the
RG. They found an infinite-randomness critical point very

similar to that in one dimension. In fact, the critical behavior
described in Eqs. �25�–�28� is also valid in two dimensions
but with different exponent values. Various numerical
implementations12,45–47 of the strong-disorder RG yielded �
=0.42–0.6, �=1.7–2.5, and �=1.07–1.25. In three dimen-
sions, the RG flow toward an infinite-randomness fixed point
has been confirmed,12 but reliable estimates of the exponent
values are still missing.

The strong-disorder RG allows one to identify the
infinite-randomness fixed point and confirm its stability but,
strictly, it cannot answer the question of whether or not a
weakly or moderately disordered system will flow toward
this fixed point, because if the disorder is weak the strong-
disorder RG step is not very accurate. 
An internal consis-
tency check43 of the RG in the weak-disorder limit can be
achieved by computing exactly rather than perturbatively the
renormalized couplings �gaps and interactions� within the
relevant two-site or three-site clusters �see Sec. III B�.� For
our system, additional insight can be gained from the results
of a conventional perturbative �replica-based� renormaliza-
tion group. Building on earlier work,48 Kirkpatrick and
Belitz35 showed that the perturbative RG always takes the
system to large disorder strength even if the bare disorder is
very small. Moreover, by taking rare region effects into ac-
count in an approximate way, Narayanan et al.49,50 showed
that there is no stable weak-disorder fixed point; instead, the
perturbative RG shows runaway flow toward large disorder.
This strongly suggests that our infinite-randomness critical
point is universal and governs the quantum phase transition
for all nonzero disorder strength.

IV. OBSERVABLES

The strategy for calculating, within the strong-disorder
RG, thermodynamic observables such as the susceptibility as
a function of temperature consists in running the RG from
the initial energy scale �I down to �=T. The high-energy
degrees of freedom eliminated in this procedure generally do
not make significant contributions to the low-energy behav-
ior of observables. At best, they change nonuniversal con-
stants. All clusters surviving at energy scale �=T can be
considered to be independent because they are coupled by
interactions J much smaller than T. The desired observable is
thus simply the sum of independent contributions from the
individual surviving clusters. Frequency-dependent observ-
ables can be determined analogously.

A. Single-cluster results

In order to proceed, we therefore need to calculate the
relevant observables for single clusters. To do so, we add a
source term to the single-cluster action �4�. It reads

SH = − T�
�n

H��n���− �n� �29�

with H��n�=�0
1/TH���ei�n�d� being the Fourier transform of

the source field conjugate to the order parameter. Because
the theory defined by Scl+SH is still Gaussian, the partition
function ZH in the presence of the field can be easily evalu-
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ated. The dynamic �Matsubara� susceptibility is then given
by

��i�n� =
1

T

�2 ln ZH

�H��n� � H�− �n�
=

1

r + 
 + ���n�2/z0
. �30�

For the temperature-dependent static susceptibility, we set
�n=0 and find the distance from criticality, ��T�=r+
�T� as
a function of temperature. To this end we solve the finite-
temperature constraint �5� yielding

��T� = ���0� + aT 
�T2/z0 � ��0��
T 
�T2/z0 � ��0�� ,

� �31�

where ��0� is the zero-temperature value determined by the
constraint integral �6�. In the super-Ohmic and Ohmic cases,
��0� is given by Eqs. �7� and �8�, respectively. The constant a
is given by a=
� in the Ohmic case and a=2 / �2−z0� in the
super-Ohmic case.

If the rotor variable � represents a cluster of moment
�number of sites� �, its contribution to the uniform suscep-
tibility is proportional to �2 while the contribution to the
local susceptibility is proportional to �. By combining this
with Eqs. �30� and �31�, we obtain the uniform static order-
parameter susceptibility as a function of temperature of a
cluster of moment � and distance � from criticality,

�cl�T� = ��2/� �� � T�
�2/T �� � T� .

� �32�

The corresponding results for the average local susceptibility
read

�cl
loc�T� = ��/� �� � T�

�/T �� � T� .
� �33�

To calculate the specific heat we also need the total-
energy contribution of a single cluster which behaves as

	Ecl � T �� � T� . �34�

This is an important difference from the random transverse-
field Ising-model case5 and stems from the fact that our rotor
variables have an unbounded spectrum.

We now turn to the dynamical order-parameter suscepti-
bility at zero temperature �focusing on Ohmic dissipation�.
From Eq. �30�, we obtain in imaginary time formalism

�cl�i�n� =
�2

� + ���n�
. �35�

After Wick rotation i�n→�+ i0 to real frequencies, this
leads to �cl��+ i0�=�2 / ��− i��� implying

Im �cl�� + i0� =
�2��

�2 + �2�2 . �36�

Analogously, the dynamical local susceptibility reads

Im �cl
loc�� + i0� =

���

�2 + �2�2 . �37�

B. Summing over all clusters

We now combine the single-cluster observables summa-
rized in Sec. IV A with the strong-disorder RG results for
density and moment of the surviving clusters given in Eqs.
�27� and �28�. We focus on the critical point and the disor-
dered Griffiths phase. On the ordered side of the transitions,
the scenario is dimensionality dependent because in d�1 an
infinite percolating RG cluster forms already at a finite-
energy scale.12

To obtain the uniform static order-parameter susceptibility
��r ,T� and the corresponding local susceptibility �loc�r ,T�,
we run the RG to the energy scale �=T and sum over all
surviving clusters. Using Eqs. �27�, �28�, and �32�, we obtain
the scaling form

��r,T� =
1

T
nT�r��T

2�r� =
1

T

ln��I/T��2�−d/���
r�� ln��I/T��

�38�

with the scaling function �� given by ���y�=Xn�y�X�
2 �y�. At

criticality, r=0, this leads to ��
ln��I /T��2�−d/� /T. In the
Griffiths phase we need to use the large-argument limit of the
scaling function giving ��Td/z−1rd�+2���1−�� ln2��I /T�.
Thus, � shows the nonuniversal power-law temperature de-
pendence characteristic of a quantum Griffiths phase. For z
�d, the susceptibility actually diverges with T→0. Along
the same lines, the scaling form of the local susceptibility is
found to be

�loc�r,T� =
1

T

ln��I/T���−d/���

loc
r�� ln��I/T�� , �39�

with ��
loc�y�=Xn�y�X��y�. This reduces to �loc

�
ln��I /T���−d/� /T at criticality and to �loc

�Td/z−1rd�+���1−�� ln��I /T� in the disordered Griffiths phase.
The scaling form �38� of the susceptibility can also be

used to infer the shape of the phase boundary close to the
quantum phase transition. The finite-temperature transition
corresponds to a singularity in ���y� at some nonzero
argument yc. This yields the unusual form Tc
�exp�−const�r�−��� shown in Fig. 1. The crossover line be-
tween the quantum critical and quantum paramagnetic re-
gions displays analogous behavior.

The specific heat C can be found by first adding the total-
energy contributions of all surviving clusters,

	E�r,T� = TnT�r� = T
ln��I/T��−d/��E
r�� ln��I/T��
�40�

with �E�y�=Xn�y�. After taking the temperature derivative
this gives C�
ln��I /T��−d/� at criticality and C�rd�Td/z in
the Griffiths phase.

To calculate the dependence of the low-temperature order
parameter m on an external �conjugate� field H, we run the
RG to the energy scale �H=��H�T. All decimated clusters
have ���H and do not contribute significantly to the order
parameter. All surviving clusters have ���H and are fully
polarized. Summing over all surviving clusters therefore
gives
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m�r,H� = n�H
�r���H

�r�

= 
ln��I/�H���−d/��m
r�� ln��I/�H�� , �41�

where �m�y�=Xn�y�X��y�. After resolving the implicit field
dependence caused by the moment in the definition of the
energy scale �H=��H, we find m�
ln��I /H���−d/� �with
double-logarithmic corrections� at criticality, r=0. For r�0,
we obtain a nonuniversal power-law field dependence, m
�Hd/zrd�+���1−���1+d/z�
ln�� /H��1+d/z, characteristic of a
quantum Griffiths phase.

Finally, to find the zero-temperature dynamic susceptibil-
ity � at external frequency �, we run the RG to the energy
scale ��=��=�0��� ��=��0 is the effective damping
constant of a cluster of moment ��. All decimated clusters
�having ����� only make negligible contributions to �. The
surviving clusters have ���� which simplifies Eq. �36� to
Im �cl���=� /�0�. In the same limit, the local dynamic sus-
ceptibility reads Im �cl

loc���=1 /�0�. Using Eqs. �27� and
�28� we now sum over all surviving clusters to obtain the
scaling form

Im ��r,�� =
1

�0�

ln��I/�����−d/��dyn
r�� ln��I/���� ,

�42�

with �dyn�y�=Xn�y�X��y�. After resolving the implicit fre-
quency dependence brought about by the moment in the defi-
nition of ��, the leading low-frequency behavior of the dy-
namic susceptibility at criticality is Im �
�
ln��I /�0����−d/� / ��0��. In the disordered Griffiths
phase, we obtain

Im � � ��0��d/z−1rd�+���1−���1+d/z�
ln��I/�0���1+d/z.

The differences from the random transverse-field Ising-
model results51,52 have two reasons: �i� the additional fre-
quency dependence hidden in the effective damping constant
� and �ii� the difference between a Lorentzian spectrum in

our case and the �-function spectrum in the Ising case. The
local dynamic susceptibility can be found along the same
lines, yielding the scaling form

Im �loc�r,�� =
1

�0�

ln��I/����−d/��dyn

loc 
r�� ln��I/����

�43�

with �dyn
loc �y�=Xn�y�. At criticality, this leads to

Im �loc�
ln��I /�0���−d/� /�0�, and in the disordered Grif-
fiths phase we get

Im �loc � ��0��d/z−1rd�+���1−��d/z
ln��I/�0���d/z.

V. GENERALIZATIONS

A. Non-Ohmic Dissipation

In this section we briefly discuss how our results change if
we replace the Ohmic damping term �z0=2� in the starting
actions �1� and �2� with a non-Ohmic term �z0�2�. We are
interested in the range z0=1–�; z0=1 corresponds to un-
damped �dissipationless� dynamics, 1�z0�2 is the so-
called super-Ohmic case �damping qualitatively weaker than
Ohmic damping�, and for z0�2 the damping is sub-Ohmic
�qualitatively stronger than Ohmic�.

Let us first consider sub-Ohmic damping, z0�2. In this
case, the crucial observation is that a single cluster with suf-
ficiently large damping constant can undergo a freezing or
localization transition independent of the bulk system. In
Sec. III A we showed that this transition occurs when the
damping constant � becomes larger than �c
=��z0−2�/z0z0 / 

�z0−2��. Within the strong-disorder RG, the
damping constant � renormalizes additively. Thus, even for
very small bare dissipation, sufficiently large and strongly
damped clusters will be formed under the RG �as long as
�→� with �→0�. Once they are formed, their quantum
dynamics freezes. Consequently, for z0�2 the global quan-
tum phase transition is destroyed by smearing.6

In the super-Ohmic case, 1�z0�2, the behavior is less
exotic. To study this case, we repeat the derivation of the
strong-disorder RG recursion relations described in Sec.
III B for 1�z0�2. As was already pointed out, the multipli-
cative form of the recursion �14� for the interactions J fol-
lows directly from the structure of second-order perturbation
theory and does not depend on z0. In contrast, the recursion
for the gaps � does depend on the value of z0. Repeating the
exact solution of the two-site cluster for the super-Ohmic
case, we find

�̃2
−x = �
�2

−x + �3
−x� �44�

instead of the multiplicative form �22�. Here x= �2−z0� /z0
and � is a constant. This form also follows from the fact that
the damping constants add, �̃2=�2+�3, together with the
power-law dependence ���z0/�z0−2�=�−1/x of the single-
cluster gap on the damping constant derived in Eq. �7�. For
undamped dynamics, z0=1, Eq. �44� reduces to the dirty bo-
son result 1 / �̃2=1 /�2+1 /�3 derived by Altman et al.53 These
authors also solved the resulting flow equations for z0=1 and
found Kosterlitz-Thouless-type flows.

FIG. 1. �Color online� Temperature-coupling phase diagram for
Ohmic dissipation. IRFP denotes the infinite-randomness critical
point. The ordered phase is divided into a conventional �CO� region
and a quantum Griffiths �GO� region. On the disordered side of the
transition, there is a quantum Griffiths paramagnet �GPM� followed
by a conventional quantum paramagnet �CPM�. The phase bound-
ary �solid curve� and the crossover line �dashed curve� between the
quantum critical �QC� region and the quantum paramagnetic re-
gions take unusual exponential forms leading to a wide quantum
critical region. In the classical critical region �CC� close to the
phase boundary classical thermal fluctuations dominate. At suffi-
ciently high temperatures �above the dotted dome�, the behavior is
nonuniversal.
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While a full solution of the RG flow equations in the
generic case 1�z0�2 remains a task for the future, the
qualitative critical behavior can be inferred from the recur-
sion relation �44�. As a result of the additive form of Eq.
�44�, the local gaps � are much more weakly renormalized
than the interactions which are governed by the multiplica-
tive recursion �22�. Near criticality, the distribution of the
interactions J thus becomes highly singular while that of the
gaps � remains narrower. We therefore expect the critical
point not to be of infinite-randomness type but conventional
with power-law scaling ���z, although the dynamical expo-
nent z can become arbitrarily large as z0→2−. Similar behav-
ior was found at a percolation quantum phase transition.54

B. Generic N�1

So far, all of our explicit calculations have been for the
large-N limit of the O�N� order-parameter field theory. In this
section we show that the results do not change qualitatively
for all N�1, i.e., all continuous-symmetry cases. In order to
do so, we reanalyze the recursion relations �14� and �22� for
generic N 
the relations �15� and �21� trivially carry over for
all N�. For definiteness, we focus on the case of Ohmic dis-
sipation.

As discussed above, the multiplicative form of the recur-
sion �14� for the interactions relies on the structure of
second-order perturbation theory only. It is thus valid for all
N including the discrete Ising case. In contrast, the form of
the recursion �22�, which describes how the local gap � �i.e.,
distance from criticality� changes if two clusters are com-
bined, potentially does depend on N. To understand this de-
pendence, we first look at the related problem of the depen-
dence of � on the size �moment� of the cluster.

By invoking the quantum-to-classical mapping it was re-
cently shown25 that the gap depends exponentially on the
size, ��e−c� �with c being a constant�, for all continuous-
symmetry cases N�1. This follows from the fact that clas-
sical one-dimensional continuous-symmetry O�N� models
with 1 /r2 interaction are known to be exactly at their lower
critical dimension55–57 implying an exponential dependence
of the correlation length on the coupling strength. Alterna-
tively, one can explicitly estimate the strength of the trans-
verse fluctuations in a putative ordered phase and notice the
logarithmic divergence of �0

�d� /��. The exponential size
�moment� dependence of the gap � requires a multiplicative
structure of the recursion relation �22� for the merging of two
clusters because their moments simply add 
see Eq. �15��.
We thus conclude that this multiplicative structure is valid
for all continuous-symmetry cases, N�1.

Consequently, for sufficiently broad disorder distribu-
tions, the complete set of recursion relations �14�, �15�, �21�,
and �22� is valid for all N�1, and with it the resulting
infinite-randomness scenario of Sec. III C. Possible
N-dependent prefactors modify nonuniversal quantities only.
An analogous conclusion was drawn in the undamped case,
z0=1, in Refs. 53 and 58.

The universal behavior of all continuous-symmetry cases
has to be contrasted with the case of Ising symmetry, N=1.
In the Ising case, the gap does not depend exponentially on

the cluster size. Instead, for sufficiently large Ohmic dissipa-
tion, the cluster dynamics freezes; i.e., it undergoes the lo-
calization transition of the dissipative two-state system.59

The resulting behavior of an Ising system with Ohmic dissi-
pation is thus very similar to that of a continuous-symmetry
system with sub-Ohmic dissipation �as discussed in Sec.
V A�. Sufficiently large clusters freeze independently from
the rest of the system which leads to a destruction of the
global quantum phase transition by smearing. This behavior
was predicted in Ref. 6 and recently confirmed by an ana-
lytical strong-disorder RG �Ref. 7� as well as numerical
simulations.60,61

VI. CONCLUSIONS

In summary, we have studied quantum phase transitions in
systems with continuous-symmetry O�N� order parameters
under the influence of both quenched disorder and dissipa-
tive dynamics. To this end, we have applied a strong-disorder
RG to the LGW order-parameter field theory of the transi-
tion. For Ohmic dissipation, we have found an exotic
infinite-randomness critical point in the same universality
class as the random transverse-field Ising chain. In the sub-
Ohmic case, the quantum phase transition is destroyed by
smearing, while super-Ohmic damping �including the un-
damped case� leads to conventional behavior. These results
must be contrasted with the case of Ising symmetry for
which an infinite-randomness critical point occurs in the ab-
sence of damping4,5 while Ohmic dissipation causes a
smeared quantum phase transition.6,7

All these different behaviors and their relations can be
understood with the help of a general classification8,25 of
phase transitions in the presence of weak disorder. This clas-
sification is based on the effective dimensionality of the de-
fects or, equivalently, the rare regions. If finite-size regions
are exactly at the lower critical dimension of the problem,
the critical point is of infinite-randomness type �accompanied
by power-law quantum Griffiths singularities�. Here this ap-
plies to continuous-symmetry order parameters with Ohmic
dissipation as well as dissipationless Ising order parameters.
If the rare regions are below the lower critical dimension, the
behavior is conventional �continuous-symmetry order param-
eters with super-Ohmic dissipation�; and if they are above
the lower critical dimension, individual regions order
�freeze� independently, leading to a smeared transition
�continuous-symmetry order parameters with sub-Ohmic
damping or Ising systems with at least Ohmic damping�.

It is worth noting that Del Maestro et al.33 very recently
studied the large-N action �3� in one dimension by numeri-
cally solving the saddle-point equations. All their results are
in beautiful agreement with our predictions; i.e., they con-
firmed that the quantum critical point is of infinite-
randomness type and in the universality class of the random
transverse-field Ising model.

We now turn to potential experimental realizations of our
theory. One application is the Hertz-Millis theory28,29 of the
�incommensurate� itinerant antiferromagnetic quantum phase
transition. In this theory, the LGW free energy �1� is derived
from a microscopic Hamiltonian of interacting electrons by
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integrating out the fermionic degrees of freedom in favor of
the order-parameter field �. While this procedure involves
integrating out soft �gapless� particle-hole excitations and is
thus potentially dangerous,36 the resulting order-parameter
field theory of the antiferromagnetic transition appears to be
internally consistent and free of additional singularities at
least in three dimensions. However, the applicability of the
theory to realistic systems is still a controversial question, in
particular, for the much-studied heavy fermion compounds
where several experimental results are in pronounced dis-
agreement with the theoretical predictions.26,27 Different sce-
narios to explain the discrepancies are discussed in the lit-
erature �see Ref. 62 for a recent review�, and one much-
discussed reason are disorder effects.63

Our theory provides explicit results on how the interplay
of dissipation and disorder in the vicinity of the itinerant
antiferromagnetic quantum phase transition can yield acti-
vated dynamics, quantum Griffiths phenomena, and non-
Fermi-liquid behavior. We expect this to make an experimen-
tal verification or falsification of the disorder scenario much
easier. Note that a generic metallic system will have extra
complications not contained in the LGW free energy �1�.
Specifically, attention must be paid to the long-range
Ruderman-Kittel-Kasuya-Yosida �RKKY� part of the interac-
tion between the magnetic fluctuations. It can produce an
extra sub-Ohmic dissipation of locally ordered clusters64

which leads to freezing into a “cluster glass” phase at a low
nonuniversal temperature TCG determined by the strength of
the RKKY interactions. This phase replaces part of the quan-
tum Griffiths regions. Its properties and the zero- and finite-
temperature transitions to the surrounding phases are not
fully explored yet �the transitions may be of fluctuation-
driven first order at low temperatures65�. The behavior of
observables in the broad quantum critical region above the
cluster glass phase will be controlled by our infinite-
randomness critical point. Possible phase diagram scenarios
are sketched in Fig. 2.

Another potential application that has attracted consider-
able attention recently is the superconductor-metal quantum

phase transition occurring as a function of wire thickness in
ultrathin nanowires.30 The clean version of this transition
was studied by means of a one-dimensional LGW theory �1�
with a complex order parameter �equivalent to N=2� and
Ohmic dissipation.31,32 However, there is an experimental
evidence for the pair breaking in this system being caused by
magnetic impurities at the surface of the nanowire. This in-
evitably introduces quenched disorder due to the random po-
sitions of the magnetic impurities. Our theory thus describes
the thermodynamics of this quantum phase transition. With
proper modifications, it should also apply to arrays of resis-
tively shunted Josephson junctions.

So far, we have focused on the thermodynamics close to
the quantum phase transition. Transport properties can also
be calculated within the strong-disorder RG by following the
approach of Refs. 51 and 52. Calculations along these lines
are underway; their results will be reported elsewhere.
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